

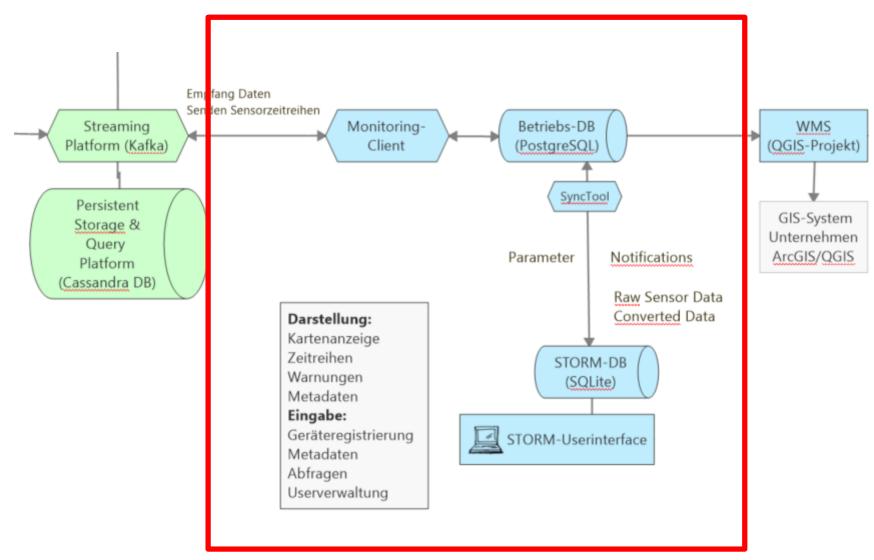
WaterGridSense 4.0 Endmeeting 08.12.2021

Entwicklung der Betriebs- und Wartungsplattform Frauke Jakobs, Dr. Harald Sommer

GEFÖRDERT VOM

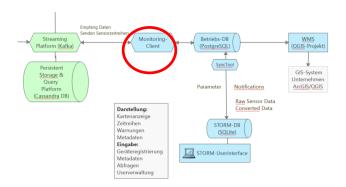
BETREUT VOM

BMBF-Fördermaßnahme Industrie 4.0 - Kollaborationen in dynamischen Wertschöpfungsnetzwerken (InKoWe)



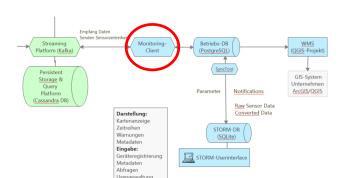
Sensor
LoRa-Server
Analyse- plattform
Betriebs- plattform

Schnittstelle	Protokoll	Format	Konvertierung			
Stationärer Sensor						
Stationärer Sensor → LoRA-TCIP- Gateway	LoRaWAN	CayenneLPP, bzw. hersteller- spezifische Bitstrings				
LoRA-TCIP-Gateway → LoRa-Server	Schnittstelle wird von externem Betreiber bereitgestellt, nur Weiterleitung					
LoRa-Server			Decodieren bitstring → sensor- und netzwerkspezifischer JSON-String			
LoRa-Sever → Analyseplattform	MQTT	JSON, Struktur abhängig vom LoRa-Betreiber (TTN, SCS, Zenner IoT)	LoRa-Betreiber TTN, SCS -> Daten werden gepusht Zenner IoT -> Daten werden gepullt			
Analyseplattform			Parsen JSON → SenML			
Analyseplattform → Monitoring-Client	TCP/IP	SenML				
Analyseplattform \leftarrow Monitoring-Client	TCP/IP	SenML				
Monitoring-Client			Komprimierung SenML → Binärobjekt für Jahresabschnitt			
PostGres/SqLite-DB		BLOB				
Userinterface			Dekomprimierung für Ausgabe als Tabelle und Graph			

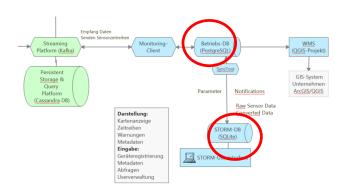


Arbeiten

- Entwicklung eines Tools zur Zeitreihen-Komprimierung "TS-Compress"
- Entwicklung des Monitoring-Client
 - Anbindung an Kafka
 - Import in die Postgres-Datenbank
 - Synchronisation der Datenbanken
- Entwicklung des Sync-Tools
 - Synchronisations lokales Projekt mit Datenbank
- Entwicklung Benutzeroberflächendarstellung
 - GIS- und Zeitreihendarstellung
 - Implementierung der Sensorregistrierung
- Durchführung von Sensortests: Übertragungstest, Kanaltest

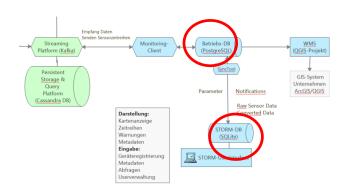


- Kommunikationsschnittstelle zwischen Kafka und Betriebs- und Wartungsplattform
- Vielfältige Aufgaben
 - · Abonnieren von Datenströmen aus Kafka
 - Import der Daten über die TS-Compress-Schnittstelle in die Postgres-Datenbank
 - Anhängen von Daten
 - Aktualisierung von Daten
 - Aktivitätsgetriggertes Senden von Daten an Kafka
 - Registrieren von Geräten und Sensoren
 - Senden von Kennlinien der Zeitreihen



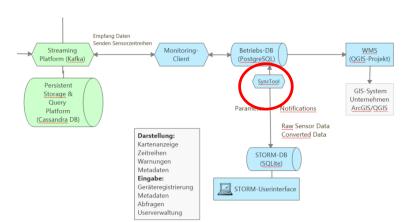
Entwicklung Monitoring Client

- Registrierung Geräte und Sensoren in Cassandra DB
 - Publizieren von Geräte- und Sensordaten an Kafka/Cassandra
 - inkl. Verortung und Transformationskennlinien
 - Aktionsgesteuerte Eintragung von Werten in die Cassandra über den Kafka-Broker
- Empfang und Verarbeitung Zeitreihen
 - Empfang Zeitreihen als Kafka Abonnement
 - Weiterleitung und Eintragung in die PostGRes DB im BLOB Format
 - Abfrage aus der PostGRes DB im BLOB Format
 - Publizieren von Zeitreihen an Kafka/Cassandra
- Zentrale Instanz f
 ür die Kommunikation mit der Middleware
 - Möglichkeit zur Kommunikation mit anderen Datenbanken



Entwicklung eines Tools zur Zeitreihen-Komprimierung

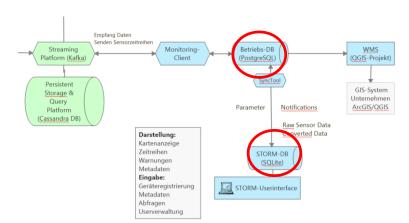
- Ausgangssituation:
 - kein standardisiertes Binärformat für Zeitreihen in relationalen Datenbanken
 - Bisher in STORM genutztes Format nur für äquidistante Zeitreihen geeignet
- Recherche von gebräuchlichen Zeitreihenformaten
 - für unterschiedliche Einsatzgebiete (Wetter-/Klimadaten, Hydrologie, IoT)
 - Anwendungsbereiche (Datenübertragung, -speicherung)
- Ermittlung der Anforderungen des Userinterface/Zeitreihenanzeige
 - Verlustfreie Komprimierung
 - Information von Zeitpunkt und Wert für jeden Messwert
- Recherche und Test geeigneter Verfahren zur Zeitreihenkomprimierung
 - Trennung von Zeitstempel und Values
 - Delta encoding, Run-length encoding


Entwicklung eines Tools zur Zeitreihen-Komprimierung

- Entwicklung von "TSCompress"
 - Codierung der Zeitreihen als Bitblöcke
 - Zusammenfassen zu BLOBS (Binary Large OBjects) je Jahr
- Speicherung in Postgres und SQLite
 - Zeitreihen als BLOBS
 - Metadaten als String- und Zahlenformate in der Datenbank
- Routine wird zukünftig auch weiteren Projekten genutzt
 - Automatisierter Import/Export in die Simulationssoftware "InfoWorks ICM"

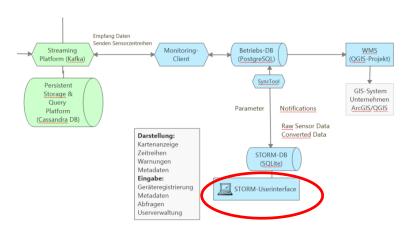
Bitblock

4bi	ts		5bits					1bit	dynamisch (1-31 bits)		
Anzahl von W max	iederho . 15	olung,	Anzahl der Bits für den zu speichernden Integer-Wert, max. 31					+/-	Wert im Bereich 0 bi		


Entwicklung eines Sync-Tools zum Abgleich der Daten PostGres/SQlite

Aufgabe des Sync-Tools

- Einloggen auf den Server erforderlich
- Lokales Erstellen von Projekten in PostGres DB aus einer Vorlagendatei
- Lokales Registrieren von Geräten und Hochladen auf PostGres DB
 - Für alle User verfügbar
 - Für User können eigene Projekte erstellt werden, die auf die gleichen Daten zugreifen
- Herunterladen von Zeitreihen von PostGres in Sqlite DB
- Festlegen von Warnwerten für alle User in einem Projekt
- Laden der Datei bei Start
- Abspeichern der Konfiguration beim Abschluss



Userverwaltung PostGres/SQlite

- Aufgabe des User-Verwaltung
 - Ziel: Multi User Multi Projekt
 - Lokales Erstellen von Usern, Hochladen auf PostGres DB
 - BeZugriff
 - Herunterladen von Projekten, die dem User zugeordnet sind von PostGres DB in Sqlite DB
 - Erstellen von Projekten auf der PostGres DB, die von mehreren Usern verwendet werden können.

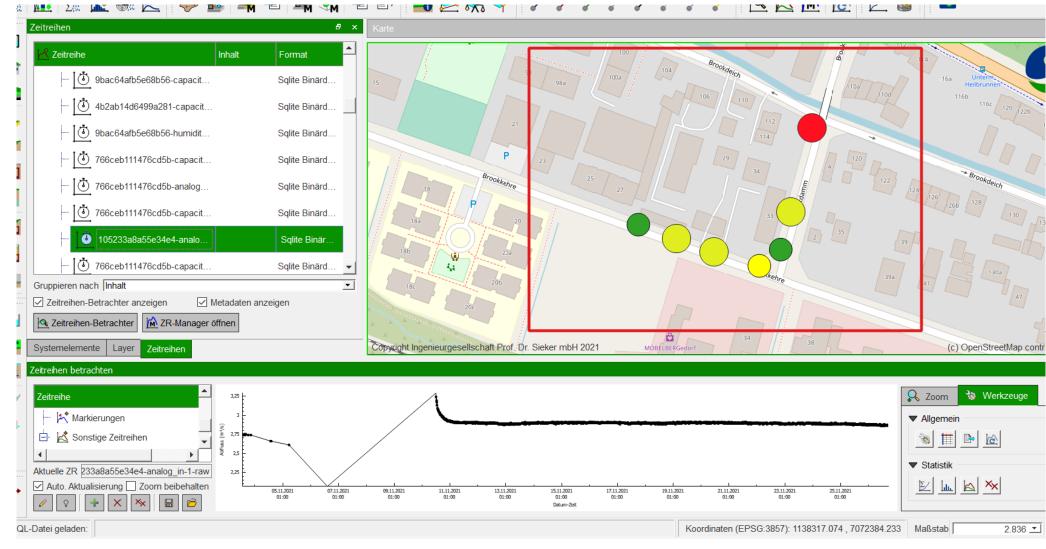
Geräten und Sensoren

Aufgabe der GIS-UI

- Anlegen und Verortung von Geräten
- Zuordnung von Sensoren zu den Geräten
- Herunterladung Visualisierung der Zeitreihen
- Darstellung der Zeitreihen unterschiedlicher Messgrößen
- Visualisierung der Zustände im GIS-UI

Workflow Arbeit mit Projekten

- Registrierung User
 - User auf Projekt angelegt
 - Mit PostGres DB synchronisiert
 - Über Kafka an Cassandra DB, inkl. Verortung und Transformationskennlinien
- Anlegen Projekt
 - Anlage Projekt in SQLite (lokal), Übertragen an PostGres DB
 - **Zuordnung User** zum Projekt
 - Synchronisieren Zeitreihen als BLOBS in Projekt sqlite lokal
 - Metadaten als String- und Zahlenformate in der Datenbank



- Registrierung Geräte und Sensoren
 - Lokal in der GIS-GUI angelegt (sqlite DB)
 - Festlegen von Gerätegruppen und Warnwerten
 - Möglichkeit der Erstellung von Daten-Transformationskennlinien
 - Mit PostGres DB synchronisiert
 - Über Monitoring-Client Kafka an Cassandra DB, inkl. Verortung und Transformationskennlinien
- Empfang und Verarbeitung Zeitreihen
 - Empfang Zeitreihen als Kafka Abonnement
 - Empfang Zustandsauswertung auf Analyseplattform
 - Eintragung in die PostGres DB im BLOB Format
 - Synchronisieren Zeitreihen als BLOBS in Projekt sqlite lokal
 - Metadaten als String- und Zahlenformate in der Datenbank

Entwicklung Zeitreihenanzeige in der Benutzeroberfläche

Livedemo

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt

- Frauke Jakobs, Dr. Harald Sommer
- f.jakobs@sieker.de, h.sommer@sieker.de

